วันพุธที่ 12 กุมภาพันธ์ พ.ศ. 2557

Pressure-sensitive adhesive

High Temperature Adhesive ,High Temperature Cement,High Temperature Insulation Board,High Temperature Insulation ,Silicon Nitride Product,Aluminium Filtration Mesh,Refractory Materials,Moldables,Mastic Cements,refractory castable, กาวทนความร้อน

 From Wikipedia, the free encyclopedia

Pressure-sensitive adhesive (PSA, self-adhesive, self-stick adhesive) is adhesive which forms bond when pressure is applied to marry the adhesive with the adherend. No solvent, water, or heat is needed to activate the adhesive. It is used in pressure-sensitive tapes, labels, note pads, automobile trim, and a wide variety of other products.

As the name "pressure-sensitive" indicates, the degree of bond is influenced by the amount of pressure which is used to apply the adhesive to the surface.
Surface factors such as smoothness, surface energy, removal of contaminants, etc. are also important to proper bonding.

PSAs are usually designed to form a bond and hold properly at room temperatures. PSAs typically reduce or lose their tack at low temperatures and reduce their shear holding ability at high temperatures; special adhesives are made to function at high or low temperatures. It is important to choose an adhesive formulation which is designed for its intended use conditions.

วันเสาร์ที่ 6 กรกฎาคม พ.ศ. 2556

What kind of glue.


fabricglue.First. Adhesive fabric (Fabric Glue).
Was produced to be used for material fabric By this time the adhesive will not harm the skin. And less time to dry.
superglue.Two. Glucosamine super glue (Super Glue).
Perhaps we could call this type of glue that "Glue CA" production of chemicals called cyanobacteria acrylate. You are the glue that hold the joint practice is quite tight and dry within 10 to 30 seconds by just one square inch of adhesive bonding material that weighs more than one ton easily. The box will look like a liquid or gel.Can be put to immediate use. If the liquid is applied to materials, plastic, metal, rubber, vinyl and ceramic tiles. Girl with a gel adhesive. Materials to be used with wood and material with different pore. Applications just dipping glue surface to be identified only There are many brands to choose from and the type of adhesive that hot glue.

Adhesive types.

In the year 1951 Dr.Harry Coover has partnered with Dr.Fred Joyner led the cyanobacterium acrylate compounds to new research by the then Dr.Harry Coover moved to the Kodak Company. The Eastman Company in the State of Tennessee, USA Tel. During which they are conducting research on the heat resistance of Acrylate polymers. (Acrylate-polymer) for use in the roof (Canopies) of the jet on Dr.Fred Joyner growing film material for ethyl acrylate cyanobacterium. (Ethylcyanoacrylate) crystalline substance, he has seen it happen more attention. Seriously and has conducted research with other drivers. Cooper River until the dream came true when he brought substance acrylate polymer was produced in the year 1958 in the name of "The Eastman Compound # 910" and a favorite as well as "Super. glucosamine (Super Glue) ".
After getting to know the history then. We came to know each type of adhesive do it.

Adhesive types.

When the fracture of materials. Or that we want to connect two materials together. We often use a chemical one. Which has the ability to help coordinate things. Them with good adhesion. Chemicals that help to coordinate this, we often refer to it as the "glue" itself.
Mostly by adhesive material containing polymer is poly (Polymer), which is composed of subunits called monomers (Monomer) concatenating a long chain molecules. Similar to the paper clip to clamp together. The adhesive was then. Because of long molecular wires. That is tied to it. Now we come to know the history of the glue before it.
Glue was first produced in England around 1750 by the time it was used as raw material in the manufacture of fish glue and subsequently developed by the introduction of rubber. Nature, animal bones, starch, protein and dairy etc. Used as raw material in the manufacture of various types of glue. With the emergence of advanced even more so in the year 1942 Dr.Harry Coover, who at that time was working in the laboratory of the Kodak Research Laboratories have discovered a chemical called cyanobacteria acrylate. (Cyanoacrylate, CH NO) with cohesive and adhesive properties. He is offering a Kodak company, but the company has denied this material. Due to the application of this cohesive and adhesive properties too.

วันอังคารที่ 11 มิถุนายน พ.ศ. 2556

Thermal insulation

Thermal insulation

From Wikipedia, the free encyclopedia
Mineral wool Insulation, 1600 dpi scan against the grain Thermal insulation is the reduction of heat transfer (the transfer of thermal energy between objects of differing temperature) between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.
Heat flow is an inevitable consequence of contact between objects of differing temperature. Thermal insulation provides a region of insulation in which thermal conduction is reduced or thermal radiation is reflected rather than absorbed by the lower-temperature body. The insulating capability of a material is measured with thermal conductivity (k).
Low thermal conductivity is equivalent to high insulating capability (R-value). In thermal engineering, other important properties of insulating materials are product density (ρ) and specific heat capacity (c).

Clothing of Thermal insulation

Clothing of Thermal insulation

Clothing can help control the temperature of the human body. To offset high ambient temperature insulation, clothing can enable sweat to evaporate (thus permitting cooling by evaporation). The billowing of fabric during movement can create air currents that increase evaporation and cooling. A layer of fabric then insulates slightly and can help keep skin temperatures to a cooler level.
To combat low ambient temperatures, a thick insulation is desirable to reduce conductive heat loss. Other things being equal, a thick sleeping bag is warmer than a thin one. At the same time, evacuating skin humidity remains important: several layers of materials with different properties may be used to achieve this goal while lowering heat losses so they match the body’s internal heat production. Clothing heat loss occurs due to wind, radiation of heat into space, and conductive bridging. The latter is most apparent in footwear where insulation against conductive heat loss to the ground is most important.
Buildings Main article: Building insulation
Common insulation applications in apartment building in Ontario, Canada. Maintaining acceptable temperatures in buildings (by heating and cooling) uses a large proportion of global energy consumption. When well insulated, a building: is energy-efficient, thus saving the owner money. provides more uniform temperatures throughout the space. There is less temperature gradient both vertically (between ankle height and head height) and horizontally from exterior walls, ceilings and windows to the interior walls, thus producing a more comfortable occupant environment when outside temperatures are extremely cold or hot. has minimal recurring expense. Unlike heating and cooling equipment, insulation is permanent and does not require maintenance, upkeep, or adjustment.
lowers the Tripton rating of the carbon footprint produced by the house. Many forms of thermal insulation also reduce noise and vibration, both coming from the outside and from other rooms inside a building, thus producing a more comfortable environment. Window insulation film can be applied in weatherization applications to reduce incoming thermal radiation in summer and loss in winter. In industry, energy has to be expended to raise, lower, or maintain the temperature of objects or process fluids. If these are not insulated, this increases the energy requirements of a process, and therefore the cost and environmental impact.

Mechanical systems of High Temperature Adhesive

Mechanical systems 


Thermal insulation applied to exhaust component by means of plasma spraying
Space heating and cooling systems distribute heat throughout buildings by means of pipe or ductwork. Insulating these pipes using pipe insulationreduces energy into unoccupied rooms and prevents condensation from occurring on cold and chilled pipework.
Pipe insulation is also used on water supply pipework to help delay pipe freezing for an acceptable length time.
Spacecraft
Thermal insulation on the Huygens probe
Cabin insulation of a Boeing 747-8 airliner
Launch and re-entry place severe mechanical stresses on spacecraft, so the strength of an insulator is critically important (as seen by the failure of insulating foam on the Space Shuttle Columbia). Re-entry through the atmosphere generates very high temperatures due to compression of the air at high speeds. Insulators must meet demanding physical properties beyond their thermal transfer retardant properties. E.g. reinforced carbon-carbon composite nose cone and silica fiber tiles of the Space Shuttle. See also Insulative paint.

Spacecraft

Thermal high temperatures Insulation on the Huygens probe
Cabin insulation of a Boeing 747-8 airliner Launch and re-entry place severe mechanical stresses on spacecraft, so the strength of an insulator is critically important (as seen by the failure of insulating foam on the Space Shuttle Columbia). Re-entry through the atmosphere generates very high temperatures Insulation  due to compression of the air at high speeds. Insulators must meet  demanding physical properties beyond their thermal transfer retardant properties. E.g. reinforced carbon-carbon composite nose cone and silica fiber tiles of the Space Shuttle. See also Insulative paint.

Thermal insulation on the Huygens probe


 
Cabin insulation of a Boeing 747-8 airliner

Automotive
Main article: Exhaust Heat Management

Internal combustion engines produce a lot of heat during their combustion cycle. This can have a negative effect when it reaches various heat-sensitive components such as sensors, batteries and starter motors. As a result, thermal insulation is necessary to prevent the heat from the exhaust reaching these components
High performance cars often use thermal insulation as a means to increase engine performance.

Factors influencing performance of high temperatures Insulation

Factors influencing performance
Insulation performance is influenced by many factors the most prominent of which include:
  • Thermal conductivity ("k" or "λ" value)
  • Surface emissivity ("ε" value)
  • Insulation thickness
  • Density
  • Specific heat capacity
  • Thermal bridging
It is important to note that the factors influencing performance may vary over time as material ages or environmental conditions change.
Calculating requirements Industry standards are often rules of thumb, developed over many years, that offset many conflicting goals: what people will pay for, manufacturing cost, local climate, traditional building practices, and varying standards of comfort. Both heat transfer and layer analysis may be performed in large industrial applications, but in household situations (appliances and building insulation), air tightness is the key in reducing heat transfer due to air leakage (forced or natural convection).
Once air tightness is achieved, it has often been sufficient to choose the thickness of the insulating layer based on rules of thumb. Diminishing returns are achieved with each successive doubling of the insulating layer. It can be shown that for some systems, there is a minimum insulation thickness required for an improvement to be realized. high temperatures Insulation

วันจันทร์ที่ 27 พฤษภาคม พ.ศ. 2556

Portland cement blends are often available as inter-ground mixtures from cement producers,

Portland cement blends
Portland cement blends are often available as inter-ground mixtures from cement producers, but similar formulations are often also mixed from the ground components at the concrete mixing plant. Portland blastfurnace cement contains up to 70% ground granulated blast furnace slag, with the rest Portland clinker and a little gypsum. All compositions produce high ultimate strength, but as slag content is increased, early strength is reduced, while sulfate resistance increases and heat evolution diminishes. Used as an economic alternative to Portland sulfate-resisting and low-heat cements. Portland flyash cement contains up to 35% fly ash. The fly ash is pozzolanic, so that ultimate strength is maintained. Because fly ash addition allows a lower concrete water content, early strength can also be maintained. Where good quality cheap fly ash is available, this can be an economic alternative to ordinary Portland cement. Portland pozzolan cement includes fly ash cement, since fly ash is a pozzolan, but also includes cements made from other natural or artificial pozzolans. In countries where volcanic ashes are available (e.g. Italy, Chile, Mexico, the Philippines) these cements are often the most common form in use. Portland silica fume cement. Addition of silica fume can yield exceptionally high strengths, and cements containing 5–20% silica fume are occasionally produced. However, silica fume is more usually added to Portland cement at the concrete mixer.[20] Masonry cements are used for preparing bricklaying mortars and stuccos, and must not be used in concrete. They are usually complex proprietary formulations containing Portland clinker and a number of other ingredients that may include limestone, hydrated lime, air entrainers, retarders, waterproofers and coloring agents. They are formulated to yield workable mortars that allow rapid and consistent masonry work. High Temperature Cement
Subtle variations of Masonry cement in the US are Plastic Cements and Stucco Cements. These are designed to produce controlled bond with masonry blocks. Expansive cements contain, in addition to Portland clinker, expansive clinkers (usually sulfoaluminate clinkers), and are designed to offset the effects of drying shrinkage that is normally encountered with hydraulic cements. This allows large floor slabs (up to 60 m square) to be prepared without contraction joints. White blended cements may be made using white clinker and white supplementary materials such as high-purity metakaolin. Colored cements are used for decorative purposes. In some standards, the addition of pigments to produce "colored Portland cement" is allowed. In other standards (e.g. ASTM), pigments are not allowed constituents of Portland cement, and colored cements are sold as "blended hydraulic cements". Very finely ground cements are made from mixtures of cement with sand or with slag or other pozzolan type minerals that are extremely finely ground together. Such cements can have the same physical characteristics as normal cement but with 50% less cement particularly due to their increased surface area for the chemical reaction. Even with intensive grinding they can use up to 50% less energy to fabricate than ordinary Portland cements.

High Temperature Cement :Pozzolan-lime cements. Mixtures of ground pozzolan

Non-Portland hydraulic cements
Pozzolan-lime cements. Mixtures of ground pozzolan and lime are the cements used by the Romans, and can be found in Roman structures still standing (e.g. the Pantheon in Rome). They develop strength slowly, but their ultimate strength can be very high. The hydration products that produce strength are essentially the same as those produced by Portland cement. Slag-lime cements. Ground granulated blast furnace slag is not hydraulic on its own, but is "activated" by addition of alkalis, most economically using lime. They are similar to pozzolan lime cements in their properties. Only granulated slag (i.e. water-quenched, glassy slag) is effective as a cement component. Supersulfated cements. These contain about 80% ground granulated blast furnace slag, 15% gypsum or anhydrite and a little Portland clinker or lime as an activator. They produce strength by formation of ettringite, with strength growth similar to a slow Portland cement. They exhibit good resistance to aggressive agents, including sulfate. Calcium aluminate cements are hydraulic cements made primarily from limestone and bauxite. The active ingredients are monocalcium aluminate CaAl2O4 (CaO · Al2O3 or CA in Cement chemist notation, CCN) and mayenite Ca12Al14O33 (12 CaO · 7 Al2O3, or C12A7 in CCN). Strength forms by hydration to calcium aluminate hydrates. They are well-adapted for use in refractory (high-temperature resistant) concretes, e.g. for furnace linings. Calcium sulfoaluminate cements are made from clinkers that include ye'elimite (Ca4(AlO2)6SO4 or C4A3S in Cement chemist's notation) as a primary phase. They are used in expansive cements, in ultra-high early strength cements, and in "low-energy" cements. Hydration produces ettringite, and specialized physical properties (such as expansion or rapid reaction) are obtained by adjustment of the availability of calcium and sulfate ions. Their use as a low-energy alternative to Portland cement has been pioneered in China, where several million tonnes per year are produced.[22][23] Energy requirements are lower because of the lower kiln temperatures required for reaction, and the lower amount of limestone (which must be endothermically decarbonated) in the mix. In addition, the lower limestone content and lower fuel consumption leads to a CO2 emission around half that associated with Portland clinker. However, SO2 emissions are usually significantly higher. "Natural" cements correspond to certain cements of the pre-Portland era, produced by burning argillaceous limestones at moderate temperatures. The level of clay components in the limestone (around 30–35%) is such that large amounts of belite (the low-early strength, high-late strength mineral in Portland cement) are formed without the formation of excessive amounts of free lime. As with any natural material, such cements have highly variable properties. Geopolymer cements are made from mixtures of water-soluble alkali metal silicates and aluminosilicate mineral powders such as fly ash and metakaolin.